Neural radiance fields, which represent a 3D scene as a color field and a density field, have demonstrated great progress in novel view synthesis yet are unfavorable for editing due to the implicitness. This work studies the task of efficient 3D editing, where we focus on editing speed and user interactivity. To this end, we propose to learn the color field as an explicit 2D appearance aggregation, also called canonical image, with which users can easily customize their 3D editing via 2D image processing. We complement the canonical image with a projection field that maps 3D points onto 2D pixels for texture query. This field is initialized with a pseudo canonical camera model and optimized with offset regularity to ensure the naturalness of the canonical image. Extensive experiments on different datasets suggest that our representation, dubbed AGAP, well supports various ways of 3D editing (e.g., stylization, instance segmentation, and interactive drawing). Our approach demonstrates remarkable efficiency by being at least 20 times faster per edit compared to existing NeRF-based editing methods.
@inproceedings{cheng2025learning,
title = {Learning Naturally Aggregated Appearance for Efficient 3D Editing},
author = {Ka Leong Cheng and Qiuyu Wang and Zifan Shi and Kecheng Zheng and Yinghao Xu and Hao Ouyang and Qifeng Chen and Yujun Shen},
booktitle = {Proceedings of the International Conference on 3D Vision},
year = {2025},
pages = {},
}